expedient measures - traducción al griego
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

expedient measures - traducción al griego

MEASURE OR PROBABILITY DISTRIBUTION WHOSE SUPPORT HAS ZERO LEBESGUE (OR OTHER) MEASURE
Singular measures; Mutually Singular measures

expedient measures      
πρόσφορα μέτρα
πρόσφορα μέτρα      
expedient measures
weights and measures         
  • An example of [[metrication]] in 1860 when Tuscany became part of modern Italy (ex. one "libbra" = 339.54 grams)
  • Palazzo della Ragione]], [[Padua]]
REAL SCALAR QUANTITY, DEFINED AND ADOPTED BY CONVENTION, WITH WHICH ANY OTHER QUANTITY OF THE SAME KIND CAN BE COMPARED TO EXPRESS THE RATIO OF THE TWO QUANTITIES AS A NUMBER (VIM)
History of Weights and Measures; Physical unit; Weights and measures; Weight and measure; Unit (measurement); Weights and Measures; Units of measure; Unit of weight; Unit of Measure; Physical units; History of weights and measures; Weights and meaures; Physical Unit; Measurement unit; Physical Units; Units of measurements; Weight & measures; Weights & Measures; Measurement units; Unit of measure; Unit of Measurement; Units Of Measurement; Units of measurement; Legal unit of measurement; Units (physics); Unit symbol
μέτρα και σταθμά

Definición

smidgen
a very small amount; similar to a dab
My ice cream sundae needed just a smidgen more chocolate syrup to be perfect.

Wikipedia

Singular measure

In mathematics, two positive (or signed or complex) measures μ {\displaystyle \mu } and ν {\displaystyle \nu } defined on a measurable space ( Ω , Σ ) {\displaystyle (\Omega ,\Sigma )} are called singular if there exist two disjoint measurable sets A , B Σ {\displaystyle A,B\in \Sigma } whose union is Ω {\displaystyle \Omega } such that μ {\displaystyle \mu } is zero on all measurable subsets of B {\displaystyle B} while ν {\displaystyle \nu } is zero on all measurable subsets of A . {\displaystyle A.} This is denoted by μ ν . {\displaystyle \mu \perp \nu .}

A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples.